Mem Cogn (2015) 43:973-989
DOI 10.3758/513421-015-0526-2
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Abstract We examined the role of dual-task interference
in working memory using a novel dual two-back task
that requires a redundant-target response (i.e., a re-
sponse that neither the auditory nor the visual stimulus
occurred two back versus a response that one or both
occurred two back) on every trial. Comparisons with
performance on single two-back trials (i.e., with only
auditory or only visual stimuli) showed that dual-task
demands reduced both speed and accuracy. Our task
design enabled a novel application of Townsend and
Nozawa’s (Journal of Mathematical Psychology 39:
321-359, 1995) workload capacity measure, which re-
vealed that the decrement in dual two-back performance
was mediated by the sharing of a limited amount of
processing capacity. Relative to most other single and
dual n-back tasks, performance measures for our task
were more reliable, due to the use of a small stimulus
set that induced a high and constant level of proactive
interference. For a version of our dual two-back task
that minimized response bias, accuracy was also more
strongly correlated with complex span than has been
found for most other single and dual n-back tasks.
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In working memory tasks, participants are required to ac-
tively maintain information and also to manipulate that
information or other information. Hence, these tasks are
sensitive not only to limits in storage capacity (Cowan,
2001; C. C. Morey & Cowan, 2004), but also to limits in
the capacity to perform two or more tasks at the same
time, each possibly interfering with the other. At least
two types of interference must be considered in working
memory tasks: dual-task interference (Kahneman, 1973;
Wickens, 1980) between maintenance and manipulation
operations within a trial, and proactive interference
(Keppel & Underwood, 1962) arising between trials.
Identifying and comparing these two kinds of interference
was the prime motivation for the present study. To do so,
we used a dual two-back task developed by Heathcote
et al. (2014) that is analogous to the redundant-target task
used by Townsend and Nozawa (1995) to measure a
“workload capacity” coefficient, which provides a rigor-
ous measure of dual-task interference.

In Heathcote et al.’s (2014) dual two-back task, participants
must indicate whether either of two attributes of the current
stimulus had appeared in a stimulus occurring two trials be-
fore. For instance, given the sequence for the first attribute A—
B-A-A-B ..., the third item repeats the item that appeared
two trials back (i.e., the first item), whereas the fourth and fifth
items do not repeat their two-back predecessors. One set of
attributes is auditory and the other visual. Suppose the second
sequence has the attributes X—=Y-X-Y-Y . . ., in which both
the third and fourth items are the same as their two-back pre-
decessors, whereas the fifth is not. In a dual two-back task, the
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observer must monitor both sequences and respond affirma-
tively if an item in either sequence fulfills the two-back rule
(e.g., both the third and fourth items in the example), and
otherwise respond negatively (e.g., for the fifth item in the
example). Tasks in which responses can be based on either
one or another stimulus attribute have been described as
redundant-target tasks.

Comparisons between performance in redundant-target
tasks and single-target tasks (i.e., tasks in which the tar-
gets are defined in terms of only one stimulus attribute)
have been used extensively to measure workload capacity
in perceptual paradigms (e.g., Altieri & Townsend, 2011;
Donkin, Little, & Houpt, 2014; Donnelly, Cornes, &
Menneer, 2012; Eidels, Townsend, & Algom, 2010b;
Eidels, Townsend, & Pomerantz, 2008; Fitousi &
Wenger, 2011; Houpt, Townsend, & Donkin, 2014b;
Ingvalson & Wenger, 2005; Johnson, Blaha, Houpt, &
Townsend, 2010; Neufeld, Townsend, & Jetté, 2007;
Von Der Heide, Wenger, Gilmore, & Elbich, 2011;
Wenger & Gibson, 2004; Wenger & Townsend, 2006;
Zehetleitner, Krummenacher, & Miiller, 2009). Workload
capacity is a quantity required to perform information
processing, with reduced capacity leading to slower pro-
cessing. Workload capacity limitations can slow
responding when more than one process—called a
channel in the perceptual context—must perform work
(i.e., process information), because the channels must
share the capacity available to perform that work (for
theory, overviews, and estimation methods, see Burns,
Houpt, Townsend, & Endres, 2013; Houpt, Blaha,
MclIntire, Havig, & Townsend, 2014a; Houpt &
Townsend, 2012; Townsend & Eidels, 2011; Townsend
& Honey, 2007; Townsend & Wenger, 2004). We
exploited the redundant-target nature of Heathcote
et al.’s (2014) task to use it as a building block for mea-
suring the workload capacity of working memory.

In the next section, we describe Heathcote et al.’s (2014)
dual two-back task in detail, providing background on its
relationship to the various tasks used to measure working
memory. We then report and analyze an experiment that
augments Heathcote et al.’s dual two-back task with single
two-back tasks, enabling a workload capacity analysis.
Comparing the information-processing latencies and accu-
racy with two versus one source of information is the cor-
nerstone of the workload capacity analysis. A formal defi-
nition of capacity is given later, but in brief, if the processing
efficiency with two sources of information were as good as
is predicted by the summed efficiency of processing each
source alone, capacity would be said to be unlimited. In
contrast, limited capacity would be indicated if monitoring
two streams took a toll on performance relative to one
stream. We report this analysis and its outcomes in a subse-
quent section.
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Tasks measuring working memory

Complex-span tasks One class of working memory tasks
focuses on the number of stored items that participants are
able to report, typically averaging accuracy over a range of
storage loads. This class derives from the simple-span tasks
(e.g., repeating back a set of random digits in the order they
were presented) and adds a requirement to manipulate infor-
mation. The manipulated information can be either relevant to
the recall task, such as requiring report in a backward or al-
phabetic order, or irrelevant to the task, such as in complex-
span tasks. For example, in one type of complex-span task,
operation span (Engle, 2002; Turner & Engle, 1989;
Unsworth, Heitz, Schrock, & Engle, 2005), decisions about
the veracity of mathematical equalities periodically interrupt
the study of items for later recall. Correlations between com-
plex span and measures of executive control have led to pro-
posals that working memory depends on the effectiveness of
attention control, as well as on storage capacity (e.g., Burgess,
Gray, Conway, & Braver, 2011).

N-back tasks Another class of tasks uses the response times
(RTs) and/or accuracy for choices to infer storage capacity.
The n-back task is popular in cognitive neuroscience, because
it is suitable for event-related physical measurement, in inves-
tigations of both working memory and attention control
(Owen, McMillan, Laird, & Bullmore, 2005). Participants
are presented with a series of stimuli, with the targets defined
as occurring # trials previously. In some paradigms, only tar-
get responses are required, and in others responses are re-
quired for both targets and lures (i.e., items that occurred at
some other value of n). Performance can be measured by
averaging accuracy over a range of values of n or by the
value of n attained, where n is increased on the basis of
accurate performance (e.g., Jaeggi et al., 2008). In other
cases, n is fixed at a smaller value so that accuracy is
high, and interest focuses instead on RTs (e.g.,
Schmiedek, Li, & Lindenberger, 2009).

As well as differing in their response measures, complex-
span tasks differ from n-back tasks in that they require the
processing of information that does not need to be stored for
later recall. Complex-span and n-back tasks have been sug-
gested to measure somewhat different aspects of working
memory (Kane, Conway, Miura, & Colflesh, 2007), although
more recent research has suggested that the latent constructs
derived from these two classes of tasks are difficult to distin-
guish (Schmiedek, Hildebrandt, Lovdén, Wilhelm, &
Lindenberger, 2009).

Heathcote et al. (2014) developed the “gatekeeper” task, a
modified version of the dual n-back verbal/spatial working
memory task that has been studied extensively by Jaeggi and
colleagues (Jaeggi et al., 2007; Jaeggi, Buschkuehl, Jonides,
& Perrig, 2008; Jaeggi, Buschkuehl, Perrig, & Meier, 2010a;
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Jaeggi et al., 2003; Jaeggi, Studer-Luethi, et al., 2010Db).
Participants are presented with pairs of visual and auditory
stimuli, with a target response being required if a stimulus in
either modality is a repeat from two trials previously, and a
nontarget response is required otherwise (see the illustra-
tion in Fig. 1). Stimuli are never immediately repeated, so
participants cannot use the easy, familiarity-based strate-
gies available in a one-back task (McElree, 2001), based
on the high availability of items held in the focus of at-
tention (Oberauer, 2002). Because gatekeeper is a two-
back task, it needs only four items to be held in memory
at any time, so it does not exceed the storage capacity
limits typically ascribed to working memory (Cowan,
2001; C. C. Morey & Cowan, 2004).

Gatekeeper uses a set of only three different stimuli in each
modality, so the stimuli frequently swap roles as targets (i.e.,
the stimuli occurring two trials back) and lures, maximizing
proactive interference. In contrast to most other n-back tasks,
in which strong proactive interference typically occurs on only
a minority of trials (see Gray, Chabris, & Braver, 2003), the
small stimulus sets mean that proactive interference is high—
and most importantly, fairly constant—over trials, since stim-
uli that did not occur two trials back must have occurred three
trials back. Heathcote et al. (2014) found that this constant
level of interference (and, hence, less variability in interfer-
ence than in other n-back tasks) led to highly reliable measure-
ment, even in a diverse online sample. Requiring a response
on every trial further serves to induce proactive interference,

Type: Double Target
Response: Block

B

Type: Single Visual
Response: Block

Type: Single Auditory
Response: Block

Type: Non-target
Response: Allow

Fig.1 Example of the first six trials in a dual-task gatekeeper block. The
white letters indicate auditory stimuli (passwords), and the visual targets
are the light-gray doors. Visual stimuli were presented in color, with the
light-gray regions in red and the dark regions in black. No response was
required for the first two trials. For each trial thereafter, the trial type and

because the mapping of the response associated with each
stimulus varies rapidly, minimizing any benefits of practice-
induced automaticity (Schneider & Shiffrin, 1977; Shiffrin &
Schneider, 1977).

Performance in the gatekeeper task is also subject to dual-
task interference, because binding processes (e.g., from stim-
ulus representations to representations of one vs. two-back
positions and/or target vs. lure roles) and the processes asso-
ciated with stimulus encoding must be performed in both mo-
dalities. Further interference occurs because responding in
gatekeeper differs from that required in most dual n-back
tasks, in which separate responses are made to the stimuli in
each modality (e.g., Jaeggi et al., 2007; Jaeggi et al., 2008;
Jaeggi et al., 2010a, b). In the gatekeeper task, a single re-
sponse, potentially informed by both modalities, is required
for each trial. Namely, participants combine the outcomes
from two modalities into a single response using an OR rule:
They respond affirmatively if the current visual item is the
same as the visual item that appeared two trials back, or if
the current auditory item is the same as the auditory item
two trials back, or if both conditions are met. Because only a
single response is made, single-target trials—in which one
stimulus is a target (i.e., it occurred two back) and one is not
(i.e., it occurred three back)—have added interference, due to
the conflicting individual stimulus-to-response associations.
That is, a stimulus from a given modality can be associated
with opposite responses on different trials, depending on the
context in which it occurs.

ot |

correct response are indicated. Single blocks present only the visual or
only the auditory information. For the auditory case, the correct response
sequence would be Block—Allow—Block—Allow. For the visual case, the
correct response sequence would be Block—Block—Allow—Allow
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Heathcote et al. (2014) found that the high levels of inter-
ference from all of the sources just discussed result in accuracy
that is typically well below ceiling, even though the gatekeep-
er task does not strongly tax storage capacity. As a result,
accuracy is a useful dependent variable. As in other two-
back tasks that require responses to both targets and lures
(e.g., Schmiedek et al., 2009b), Heathcote et al. found that
RT was also a useful dependent measure.

Figure 1 illustrates a sequence of trials in the gatekeeper
task. We told participants they were in training to become a
nightclub doorperson, and that their task was to allow in only
cool patrons. The stimuli are both visuospatial (an image of
three doors, in which the door location is the critical attribute)
and auditory (a spoken letter). A patron tries to gain access
through one of the three doors, as indicated by that door being
highlighted, and by saying one of three password letters, “P,”
“Y,” or “O.” These specific letters were selected to minimize
acoustic confusion (Conrad, 1964), so that errors would tap
memory and not perceptual errors. We also told participants
that no patron was so uncool as to use the door or password
from the last trial, but that they do slip up by using the door
and/or password from two trials back, in which case they must
be blocked. Decision speed was emphasized by telling partic-
ipants that only gatekeepers who can decide both quickly and
accurately will make the grade and be employed by the
nightclub.

In order to directly examine the impact of the dual-task
requirement, we used an elaborated version of Heathcote
et al.’s (2014 task with both single-task (either all auditory
or all visuospatial) and dual-task blocks. In their experiment
examining practice effects, Jaeggi et al. (2010b) found better
initial performance in a single than in a dual n-back task, and a
faster improvement with practice. Hence, it seemed likely that
we would observe better performance in single than in dual
blocks. A nice feature of the design of gatekeeper is that,
because only a single response is required in our dual-task
blocks, a comparison of single-target trials in single- and
dual-task blocks enables us to measure dual-task load with
the number of targets and responses controlled. Workload ca-
pacity measurement provides an even more refined way of
quantifying dual-task interference between the two processes
(“channels™) that match the memory representations of the
two-back auditory and visual stimuli, respectively, to the cur-
rent auditory and visual stimuli. In particular, the workload
capacity measure is applied to memory processes, by compar-
ing performance across various levels of processing load.
Namely, we can compare performance between double-
target trials in dual-task blocks (i.e., in which participants
monitor both auditory and visual streams) and single-target
trials in single-task blocks (in which participants are presented
with, and monitor, only one modality at a time).

Single blocks in the gatekeeper task have a 50 % target
(“block™) rate, and double blocks a 75 % target rate when

@ Springer

the stimulus types occur with equal probabilities. Heathcote
et al. (2014) found that in this case, participants developed
expectations about the probability of a target in dual blocks
that biased their responding toward the more common “target-
present” response. Because bias differences might affect the
single- versus dual-block comparison, we used dual blocks
with 50 % targets for some participants (by decreasing the
probability of selecting the visual and auditory stimuli that
occurred two back), as well as the standard 75 % target blocks
for other participants. In both cases, targets occurred on 50 %
of trials in the single blocks. The 50 % dual condition neces-
sarily introduced some predictability (i.e., the next stimulus
was more likely to have occurred three back), which might
also lead to participant expectations that could affect perfor-
mance. By running both 50 % and 75 % conditions, we sought
to determine whether difference in expectations led to differ-
ences in performance that affected our workload capacity
measurement.

In order to measure the convergent and divergent validity
of measures obtained in the gatekeeper task, participants also
completed a complex-span task, Unsworth, Heitz, Schrock,
and Engle’s (2005) operation span (OSPAN) task. Complex-
span measures commonly have a relatively low correlation
with performance in standard n-back and dual n-back tasks
(see Jaeggi et al., 2010a, for a summary). Furthermore, Kane,
Conway, Miura, and Colflesh (2007) found that higher proac-
tive interference in an n-back task—as is the case for the
gatekeeper task—did not increase its correlation with
OSPAN. We also measured only a fixed level of n =2 in the
gatekeeper task, as compared to a range of 3—7 in the OSPAN
task, so a strong correlation would be unexpected. However,
the dual version of the n-back task does make it more like
complex-span tasks, with their dual-task requirements, so it
was possible that the high reliability of gatekeeper that
Heathcote et al. (2014) found, particularly for mean RT and
accuracy measures, might lead to a higher correlation. We
report the results from the Spearman—Brown split-half proce-
dure in order to quantify the reliability of the present
experiment.

In summary, the purpose of the present research is to pro-
vide a rigorous analysis of some relatively novel aspects of the
concept of working memory capacity, and to investigate their
relationship to individual differences in human information
processing. To this end, we used Heathcote et al.’s (2014)
“gatekeeper” redundant-target dual n-back task, which fea-
tures a strong and homogeneous level of proactive interfer-
ence as well as multitasking demands. Our analysis first
established the reliability of the performance metrics obtained
with gatekeeper, and then contrasted them with another work-
ing memory capacity measure provided by the OSPAN task.
Finally, systems factorial theory (Townsend & Nozawa, 1995)
was used to formally model individual differences in work-
load capacity, identifying when performance was
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characterized by limited or fixed capacity and when perfor-
mance was consistent with unlimited capacity.

Method
Participants

University of Utah undergraduates (372 total; 224 female, 148
male, mean age 23 years) were tested in groups of up to five
and received course credit for participation. They provided
informed consent and were randomly assigned to the dual-
block 50 %-target and 75 %-target groups and then performed
the OSPAN task, followed by the gatekeeper task. The data
from 61 participants were lost due to software errors, leaving a
final sample of 311, with 147 in the 50 % group and 164 in the
75 % group.

Procedure

OSPAN task The task presented simple math problems re-
quiring a “true” or “false” response [e.g., (8/2) +2 =12 ...
“False™]. Following each math problem, a letter was presented
for later recall. Participants completed three practice blocks,
then a simple letter span task and a block requiring the speed-
ed solution of math problems. Solution times were used to set
the time allowed for responding to math problems in later
blocks (mean + 2.5 standard deviations). The third practice
block consisted of three sets of two trials that combined math
problems and letter recall. Participants then completed three
sets each of three to seven math and letter pairs (75 each in
total) in a random order, and were asked to perform immediate
recall of the letters in the order in which they had been pre-
sented. The stimuli were presented on a computer screen, and
responses were made with a computer mouse by clicking a
true-or-false text box when responding to the math operations.
Letter recall required participants to click the correct letters in
the correct order among a 3 x 4 matrix of letters. The OSPAN
score was the total number of letters accurately recalled in the
correct order, out of 75.

Gatekeeper task Participants completed the task through a
Firefox browser, with auditory stimuli presented via head-
phones. A trial terminated with the response, or after 2.5 s if
no response was given, and a new trial would begin after a 1-s
interval. As is illustrated in Fig. 1, in dual-task blocks, at the
start of each trial one of the three doors turned red, and one of
the letters “Y,” “P” or “O” was spoken through the computer
speakers in a female voice. In single-task blocks, only the
auditory or only the visual stimuli were presented.
Responses were made via the keyboard using the “z” and */
” keys to allow or block entry, with the mapping alternating
for each new participant. Participants were told that the initial

two entries on each block of trials were the manager and the
barman, who were allowed entry. Thus, they did not have to
respond, but still had to remember the doors and passwords
used.

Participants performed four practice blocks, starting with
two 12-trial single-task blocks, one visual and one auditory.
Feedback was provided at the top of the screen, indicating
whether the responses were correct or incorrect. They then
performed two practice dual-task blocks of 27 trials, the first
with feedback and the second without. Practice was followed
by 16 experimental blocks, each with 27 trials and no feed-
back. Participants were required to press the space key to
move on to the next block, but they could only do so after a
mandatory 1-min break between blocks. At the conclusion,
participants were given feedback about their overall
performance.

The 16 experimental blocks were divided into eight dual-
task blocks and four visual and four auditory single-task
blocks. The order of the dual and single blocks was chosen
randomly over participants, as was the order of the visual and
auditory single blocks. The auditory and visual stimuli were
selected randomly and independently, with the constraint that
they never repeated immediately. In the 75 %-target dual-task
blocks, the available stimuli (i.e., those that did not occur on
the last trial) were chosen with equal probabilities, so no-tar-
get, visual-target-only, auditory-target-only, and double-target
trials occurred on average with equal frequencies. In 50 %-
target dual blocks, the available stimuli were randomly select-
ed subject to the constraint that the double, single visual, and
single auditory stimuli each occurred on 16%/5% of trials, and
no-target stimuli occurred on the remaining 50 % of trials.

Results
Overview

Results are presented for both individual and group-
level gatekeeper and OSPAN performance. For gate-
keeper, the performance in single-target conditions is
contrasted with performance in dual-target conditions,
and the psychometric reliability of the different mea-
sures is examined. Correlations between the different
parameters of gatekeeper are computed and compared
with correlations involving the measures obtained in
the OSPAN task. Finally, data from the single-target
and dual-target conditions are modeled using systems
factorial technology to analyze individual differences in
workload capacity. Taken together, these analyses pro-
vide a rigorous assessment of gatekeeper as a method
for understanding workload capacity in working
memory.
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Bayes factor analysis

We used the BayesFactor package for the R statistical lan-
guage (R. D. Morey & Rounder, 2012) to perform Bayes
factor (BF)-based tests of correlations, # tests, and analysis of
variance (ANOVA) using Rouder, Morey, Speckman, and
Province’s (2012) default prior method. BFs are not subject
to the bias, in traditional frequentist approaches using a fixed-
criterion p value, of being increasingly likely to declare effects
significant as sample size increases (Raftery, 1995, Table 9).
In contrast to null-hypothesis testing (see R. D. Morey &
Rouder, 2011; Wagenmakers, 2007), they can also provide
evidence for null effects relative to appropriately scaled priors.
BayesFactor uses priors on effect sizes, and we found that our
inferences were insensitive to a reasonable range of assump-
tions about the plausible range of effect sizes.

For the ANOVA analyses, we fit all possible hierarchical
models—that is, all additive combinations of main effects and
interactions, with the restriction that when higher-order terms
were included, so were all of their lower-order constituents,
corresponding to a Type II sums-of-squares approach in tradi-
tional ANOVA. We first report the best model—that is, the
model with the strongest evidence, as indicated by the largest
BF relative to the intercept-only (grand mean) model. We then
examine the strength of evidence against alternative models
that either added a term to or removed a term from the best
model. To do so, we used BFs for the best model relative to the
alternative model, which were necessarily greater than 1.

For example, BF = 10 indicates that the data increase sup-
port for the best model relative to the alternative model by a
factor of 10. Jeffreys (1961, p. 432)" described a factor of 10
or larger as indicating strong evidence, a factor from 3 to 10 as
indicating positive evidence, and a factor of 3 or less as pro-
viding equivocal evidence. Although we report the numerical
values of BFs, because they have a natural interpretation in
terms of support for the hypotheses provided by the data, these
classifications provide a useful approximate guide when sum-
marizing the results. For, even though a term is included in the
best model, it can be described as having only weak support if
BF < 3. Similarly, the exclusion of a term from the best model
only has weak support if BF < 3. In contrast, as the BF

' Kass and Raftery (1995) suggested a similar scheme, but
with 3-20 labeled positive, 20—150 strong, and greater than
150 very strong. They also discussed how a BF can be under-
stood in terms of the relative abilities of models to predict the
observed data. It is important to note that labels can be mis-
leading when strong prior evidence is present. For example, if
model A is a priori considered 100 times more likely than
model B, then a factor of 10 for model B versus model A
means that model A is still remains 10 times more likely. In
our application, we do not think that any such strong prior
beliefs would substantially distort the conventional labeling.
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increases above 3, support increases for including the term
in the model (analogous to a term being significant in a
frequentist analysis) or excluding the term from the model
(i.e., support for a null effect). We also provide posterior me-
dians to illustrate the effects and use 95 % credible intervals
(CIs, the 2.5th to 97.5th percentiles of the parameter’s poste-
rior distribution) to quantify the uncertainty of these estimates.

Gatekeeper and OSPAN accuracy and exclusion criteria

Participants with more than 10 % nonresponses on the gate-
keeper task (33) were removed. Single-target and double-
target block accuracies for the remaining 311 participants are
plotted in the left panel of Fig. 2. There was strong evidence
for greater accuracy in single (82 %) than in dual (74 %)
blocks (BF = 2.1 x 10°%; CI = 6.4 %-9.1 % for the accuracy
difference). Figure 2 shows that some participants responded
at or below chance, indicating that they did not understand or
engage with the gatekeeper task. These participants, defined
by a score of less than 55 % correct in either the single or the
double blocks (66), were removed from further analyses. In
the remaining 245 participants, we again found strong evi-
dence of greater accuracy in single (89 %) than in double
(79 %) blocks (BF = 1.9 x 10°%; CI = 8.7 %—11.2 % for the
accuracy difference).

The right panel of Fig. 2 plots recall and math accuracy in
the OSPAN task for the full sample, with participants failing
the gatekeeper accuracy cutoff being plotted as triangles.
Recall accuracy in the overall sample (76 %) increased only
slightly (to 78 %) when participants failing the gatekeeper
cutoff were removed. Unsworth et al. (2005) recommended
the exclusion of OSPAN participants with less than 85 % ac-
curacy in the math task, in case they were ignoring the math
problems to boost recall. The left panel of Fig. 2 plots as
triangles the gatekeeper accuracy for the 32 participants
(10 % of the overall sample) with less than the 85 % math
accuracy cutoff. It shows that failure of the OSPAN cutoff was
not associated with failure of the gatekeeper cutoff. When the
20 participants failing the OSPAN cutoff were removed from
the 245 who passed the gatekeeper cutoff, gatekeeper accura-
cy was unchanged to the nearest percentage. We decided to
retain the sample of 245 participants in all analyses except
those directly involving OSPAN, for which we used only the
225 participants who passed both cutoffs.

Reliability

Table 1 displays the Spearman—Brown split-half reliabilities
for the statistics derived from dual and single blocks in the
gatekeeper task for data from all » = 200 trials and from
randomly selected subsets of » = 100 and 50 trials.
Reliabilities were averaged over 100 random subsets; with this
number of subsets, the standard error of the mean estimate was
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Fig. 2 The left panel shows accuracy in the single-target and double-
target blocks of the gatekeeper task. Circles represent participants with
greater than the 85 % cutoff for math accuracy in the OSPAN task, and
triangles represent the excluded participants. The dotted lines represent
the 55 % accuracy cutoffs in the gatekeeper task. The right panel shows

negligible. In Table 1, we also quantify the reliability of the
response-choice (i.e., “block” vs. “allow entry”) data, both in
terms of the overall accuracy (i.e., the percentage of correct
responses) using the normal, equal-variance signal detection
theory measures (Stanislaw & Todorov, 1999).

Table 1  Average Spearman—Brown split-half reliabilities based on a
design with 7 trials for overall percentage correct (PC), overall mean RT
(MRT), and signal detection sensitivity (d")

50 % 75 %
200 100 50 200 100 50
Dual blocks PC 97 .93 90 .96 93 .90
day 78 71 .66 .84 .81 79
d, .86 .76 67 .92 .84 78
dy .85 75 67 91 .83 77
MRT 99 97 96 .99 .98 .96
MRT,, .99 97 96 .99 98 .96
MRT, .96 .93 90 .96 93 .90
MRT, 73 .56 46 .87 77 .69
MRT,, .60 53 48 .68 .63 .60
Single blocks ~ PC; 98 .96 95 .99 97 .96
da 76 .67 92 .84 78 .76
d .85 75 67 91 .83 77
MRT;, .98 97 95 .98 .96 .95
MRT,, .96 .93 90 .96 93 .90
MRT,, 73 .56 46 .87 77 .69
MRT,,; .60 53 48 .68 .63 .60
MRT,,; .73 .58 46 .80 .66 .56

The subscripts indicate statistics calculated on the basis of dual-target
(av), auditory (a), or visual (v) single-target trials (relative to nontarget
trials, in the case of d"), nontarget (no) trials (for dual blocks), and auditory
nontarget (an) and visual nontarget (vn) trials (for single blocks)
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accuracy in the OSPAN task. Circles represent participants with greater
than the 55 % cutoft for single and dual accuracy in the gatekeeper task,
and triangles represent the excluded participants. The dotted line
represents the math accuracy cutoff in the OSPAN task

OSPAN-Gatekeeper correlations

Table 2 displays the correlations among OSPAN recall and
selected gatekeeper performance measures (principally those
with higher reliabilities). These correlations are based on only
the results from participants with 85 % or greater accuracy in
the OSPAN math task, and were calculated separately for the
50 % and 75 % groups (100 and 125 participants,
respectively).

Accuracy and RT in single- and dual-task blocks

Figures 3 and 4 display the accuracy and mean RT results for
the 50 % and 75 % groups, broken down by the different 2 x 2
within-subjects designs for single (Visual vs. Auditory x
Target Present vs. Absent) and dual (Auditory Target Present
vs. Absent x Visual Target Present vs. Absent) blocks. We
report three types of analyses, including Group as a
between-subjects factor: separate analyses of the single and
dual blocks, and an analysis across block types of the single-
target trials, focusing on the effect of dual-task load. We ex-
amined the response probabilities using signal detection
theory’s sensitivity and bias measures. Table 3 reports the best
model selected in the ANOVA analyses. In all but one case, a
model that was simpler than the most complex ANOVA mod-
el was best.

Dual-block analysis In mean correct RTs, there was
equivocal evidence for slower performance in the 50 %
than in the 75 % group (1,139 vs. 1,079 ms, BF = 1.7).
The main effects of slower nontarget than target perfor-
mance were similar for auditory and visual targets (114
and 131 ms, respectively). We observed strong evidence
for an interaction between the auditory- and visual-target
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Table 2 Correlations among OSPAN recall accuracy and Gatekeeper performance measures for participants with accuracy 85 % for greater in the

OSPAN math task

OSPAN PC PC, MRT MRT, Cz Czf Cp
OSPAN 43T 307 01 -16 —-09~ —10 -21"
PC 21 627 A7 12 05 -.03 767
PC, —11" 62 27 -17 -39 -34 44"
MRT 02 197 307 S —23" —26" -01
MRT; —14 02 -07" 537 ST ST —11-
Cz -16 -02 —44 —40 38 97" A1
Czf -12 .05 -36"" —A44t 37 95 147
Cp 07 g4 347 03” -01 18 24

The upper triangle contains the results for the 50 % group, and the lower triangle, those for the 75 % group. Correlation tests: single, double, and triple “+”
superscripts indicate 3 < BF < 10, 10 < BF < 100, and BF > 100 (i.e., substantial, strong, and very strong evidence that the correlation is nonzero), and a

«

single

superscript indicates 0.1 >BF > /5 (i.e., substantial evidence that the correlation is zero). See Table 1 for definitions of all of the measures, except

the workload capacity measures (Cz, Czf, and Cp), which are defined and discussed in the Working Memory’s Workload Capacity section

versus nontarget effects (BF = 3.1 x 10'"). As is shown in the
right panels of Fig. 3, this was due to a greater slowing for
auditory nontargets versus targets when the visual stimulus

was also a target (168 ms) than when it was a nontarget (60 ms).

Sensitivity (d') was greater for the 50 % group than for the
75 % group (1.91 vs. 1.58, BF = 7.1) and differed between
trial types (i.e., double vs. single, BF = 1.5 x 10°%), but these
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effects did not interact (BF = 1/6.3). A linear contrast on the
trial-type main effect showed positive evidence against a dif-
ference between visual-target and auditory-target trials (1.49
vs. 1.44, respectively, BF = 1/7.8), and strong evidence for a
difference between double-target (2.25) and the average of
single-target trials (BF = 1.7 x 10°®), consistent with the in-
teractions evident in the right-hand panels of Fig. 4.
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Fig. 3 Mean correct RTs, with 95 % within-subjects confidence intervals (R. D. Morey, 2008) depicted by horizontal lines and individual 95 %
confidence intervals depicted by extended lines, as recommended by Baguley (2011)
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Fig.4 Average probabilities of detecting a target (responding “Block™), with 95 % within-subjects confidence intervals (R. D. Morey, 2008) depicted by
horizontal lines and individual 95 % confidence intervals depicted by vertical lines, as recommended by Baguley (2011)

‘We found positive evidence for unbiased responding in the
50 % group (signal detection theory’s bias measure, ¢ =—0.01,
BF =6.5, CI1=-0.07 to 0.05), and strong evidence for target-
biased responding in the 75 % group (¢ = —0.23, BF = 4.1 x
10°, CI =-0.3 to —0.15) and for the two being different (BF =

Table 3  Bayes factor analysis of variance model selection with Bayes
factors, relative to the best-fitting (i.e., most complex) model for the mean
RT, signal detection theory sensitivity (d'), and bias (c) measures

Measure ANOVA Selected Model Bayes
Factor
Mean RT Double blocks A+V+G+AxV 184
Single blocks T+M+G+TxG 275
Single trials B+M+G+BxM+BxG 54
d Double blocks TM + G 6.3
Single blocks M 14
Single trials B+M+G+BxG 34
c Double blocks G 1
Single blocks G 57

A = Auditory target vs. nontarget; B = single vs. double Block; G =75 %
vs. 50 % Group; M = visual vs. auditory Modality; T = Target vs. non-
target trial; TM = Target Modality, visual vs. auditory vs. both; V = Visual
target vs. nontarget

691 for the best model in Table 3 with a group difference,
relative to a model with no group difference).

Single-block analysis For mean correct RTs, auditory was
slower than visual (979 vs. 749 ms, BF = 4.8 x 10''").
Nontarget was also slower than target (918 vs. 809 ms), and
the 50 % group was slower than the 75 % group (953 vs.
794 ms), with the two effects interacting because the
slowing for nontargets was smaller in the 50 % than
in the 75 % group (77 vs. 134 ms, BF = 32.3). The
interaction is evident in the left-hand panels of Fig. 3 as
a smaller gap between the solid and dashed lines for the
50 % group than for the 75 % group.

As is shown in Table 3, strong evidence emerged for
greater sensitivity in the visual than in the auditory mo-
dality (d' = 2.83 vs. 2.63) and positive evidence against a
main effect of group (BF = 1/3.1). Table 3 also shows that
there was strong evidence for a difference in bias between
the 75 % and 50 % groups (¢ = —0.33 vs. —=0.11), and in
both cases there was strong evidence of the bias being
toward target responses (BF = 2.9 x 10?°, CI = —0.38 to
-0.28, and BF = 5.1 x 10*, CI = —0.15 to —0.07, respec-
tively). We also found positive evidence against the inclu-
sion of a modality main effect (BF = 1/9.4).
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Single-target trials in single versus dual blocks Mean cor-
rect RTs for single-target trials were faster in the 75 % than in
the 50 % group (918 vs. 1,039 ms) and for visual than for
auditory stimuli (911 vs. 1,031 ms). Critically, responding
was also much faster in single than in double blocks (809
vs. 1133 ms), indicating an effect of dual-task load, and this
difference was larger in the 75 % than the 50 % group (382 vs.
249 ms, BF = 2.8 x 10%). The single- versus dual-block dif-
ference was also larger for visual than for auditory targets (426
vs. 220 ms, BF = 8.6 x 10%°).

An effect of dual-tasking was also supported by greater
sensitivity (d') in single than in dual blocks (2.73 vs. 1.47).
Sensitivity was greater in the 50 % than in the 75 % group
(2.15vs. 2.06), with the single-versus-dual difference being
greater in the 75 % than in the 50 % group (1.46 vs. 1.02,
BF = 6.1 x 10%). The evidence was only equivocal that d'
differed between the visual and auditory modalities (2.16
vs. 2.04, BF = 2.6).

Discussion

The detailed pattern of results in the gatekeeper task suggested
a speed—accuracy trade-off in the 75 % target group, due to a
bias to make fast “target-present” responses. First, overall
responding was faster in the 75 % than in the 50 % group.
Single blocks (either exclusively auditory or exclusively visu-
al) also differed from dual blocks (in which both auditory and
visual streams required simultaneous monitoring), in that re-
sponses were faster. This was particularly so for visual single
blocks, and was more evident for the 50 % than for the 75 %
group. An overall tendency for faster “target-present” than
nontarget responses was observed, in accordance with other
redundant-target studies (e.g., Eidels, Townsend, Hughes, &
Perry, 2015), and these trends were similar in single and dual
blocks. However, in contrast to dual blocks, in single blocks
the relative disadvantage for nontargets in the 75 % group was
larger, even though that group was faster overall. This finding
is consistent with fast target-biased responses in the 75 %
group. Supporting this conclusion, the signal detection theory
measure of target response bias was greater in the 75 % than in
the 50 % group.

Comparison of the single-target trials from the single and
dual blocks confirmed that the slower responding in the 50 %
than in the 75 % group, and the slower responding to auditory
than to visual targets, was greatest in single blocks. Sensitivity,
measured by d', was greater in the 50 % group than in the 75 %
group, suggesting a speed—accuracy trade-off due to faster and
less accurate responses in the 75 % group. However, a speed—
accuracy trade-off was not indicated for the faster visual re-
sponses, which if anything were more accurate than the audi-
tory responses.

@ Springer

Of importance for questions about multitasking and capac-
ity, responding to single-target trials was much faster in single
than in double blocks, even though in both block types there
was only one target and only one response was required.
Sensitivity was also much greater in single than in dual blocks,
ruling out a speed—accuracy trade-off, and suggesting strong
dual-task demands on the capacity available for information
processing. Performance differences across single and dual
blocks were commensurate with the basic principles of infor-
mation theory, in which performance depends not only on the
stimulus currently presented, but also on the other stimuli in
the set that could have been presented, although they may not
be displayed on that particular trial (e.g., Garner, 1974). We
investigate this issue in more detail in the next section.

Heathcote et al.’s (2014) finding that some gatekeeper per-
formance measures have better reliability than traditional #-
back measures was replicated and was somewhat stronger,
perhaps due to the greater homogeneity of the undergraduate
participant sample in the present experiment than in their on-
line sample, whose ages ranged over seven decades. In partic-
ular, for both the 50 % and 75 % groups, and down to as few
as 50 trials, the reliability of dual-block accuracy was .9 or
greater, and single-block accuracy, as well as the mean RTs for
dual and single blocks, had .95 or better reliability. The reli-
abilities were similar for the 50 % and 75 % groups and for
analogous measures in the single and dual blocks.

The results for the 75 % group were consistent with our
expectation of little correlation between OSPAN recall and
gatekeeper accuracy. However, in the 50 % group we found
strong evidence for a correlation of .43 with dual-block accu-
racy and .3 with single-block accuracy. The high reliability of
the gatekeeper accuracy score might be one reason for these
strong correlations, but it cannot be the only factor, since the
high correlation is specific to the 50 % group and to dual-
block accuracy, whereas the reliabilities were equally high
for both groups and single-block accuracy. To be specific,
strong evidence emerged for a greater correlation in the
50 % than in the 75 % group between dual-block (BF =
655) and single-block (BF = 47) accuracy. Furthermore, when
both single- and dual-block accuracy (which are themselves
highly correlated) were entered into a regression on OSPAN
recall, a model with only dual-block accuracy was selected
(BF = 862), and there was positive evidence against including
both predictors (BF = 1/5.4). We will discuss the relationship
with OSPAN further in the General Discussion, but first we
turn to the measurement of workload capacity.

Working memory’s workload capacity

We have argued that the gatekeeper task is strongly affected
by two types of interference, acting between the trials within a
single task (proactive interference) and within trials from two
simultaneous tasks (dual-task interference). In our analysis
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comparing single-target trials, we found that single-target re-
sponses in dual-task blocks were both slower and less accurate
than responses in single-task blocks. In order to better under-
stand the role of dual-task interference, we used Townsend
and Nozawa’s (1995) systems factorial fechnology, which
provides a rigorous measure of the level of dual-task
interference.

In systems factorial technology, the speed of a double-
target condition relative to single-target conditions is used to
ascertain whether the processing related to two perceptual
processes or “channels” shares a limited pool of capacity.
We used double-target responses from dual-task blocks and
single-target responses from single-task blocks to ask the
same question about the processes for matching the stimuli
on the current trial to the contents of working memory. We
did not use in this calculation single-target trials in the dual-
task blocks, because they still required processing in both
channels, which could potentially cause some capacity shar-
ing and require interference control, and so would address a
somewhat different definition of workload capacity.

Most applications of systems factorial technology
have defined workload capacity using RT, by comparing
the distributions of RTs for double- and single-target
conditions. RT distributions can also be characterized
in terms of a hazard-rate function, /4(¢), the instanta-
neous probability that a response will occur at time ¢,
given that it has not already occurred. In particular, the
workload capacity at time ¢ is defined as

C(1) = Hav(1)/[Ha(t) +Hy (1), (1)

where H(f) is the integral of A(f) from zero to ¢, the
subscript AV indicates the double-target (auditory and
visual) condition, and the subscripts A and V, the single
auditory- and visual-target conditions, respectively. If
processing occurs in parallel and is statistically indepen-
dent for the auditory and visual channels, and if at time
t channels do not share capacity (i.e., in the double-
target condition, processing in the auditory channel does
not affect the speed of the visual channel, and vice
versa), C(f) = 1.

The unlimited-capacity independent parallel model acts as
a baseline against which to compare other cases. For example,
if capacity is limited in the sense that processing is serial (i.e.,
only one channel is active at any given time), C(t) = Y.
Similarly, if processing is parallel but a fixed capacity is
shared among active channels, so that the processing in each
channel is slowed in the double-target condition relative to the
single-target conditions, C(f) = ". Partial sharing, or a decrease
in the overall capacity that is available to be shared as more
channels become active, can result in other values of C(¢) < 1.
Supercapacity—in which the processing in each channel is
faster in double- than in single-target conditions—occurs when

C(¢) > 1, and is associated with positive interactions between
the channels, such as can arise from gestalt phenomena (e.g.,
Eidels et al., 2008).

Systems factorial technology has usually been applied to
high-accuracy paradigms, and so has focused on RTs (but see
Donkin et al., 2014; Townsend & Altieri, 2012). Given that
gatekeeper performance is error prone, we also examined a
measure of workload capacity based on the error rates for
targets, Cp, which we define below. Townsend and Altieri
(2012) presented another approach, based on measures of
workload capacity that they called “assessment functions,”
which simultaneously take into account both RT and accuracy.
However, these measures are a function of time, and cannot be
readily subjected to regression analysis. For C(f), Houpt and
Townsend (2012) derived a convenient summary statistic that
can be used to calculate correlations with other measures, such
as OSPAN. Hence, we preferred to use Houpt and Townsend’s
measure along with the Cp summary statistic for capacity
based on accuracy, although we acknowledge that future re-
search might seek to exploit the extra information contained in
the time course of C(¥).

Like the RT-based measure, the accuracy-based workload
capacity measure compares single- and double-target perfor-
mance, and again uses the unlimited-capacity parallel inde-
pendent model as a baseline. Assuming statistical indepen-
dence, and that activity in one channel does not affect the
accuracy of processing in another channel:

p(miss |double) = p(miss| single visual) x p(miss |single auditory).
(2)

For example, if there were a 10 % error rate in each of the
single conditions, Eq. 2 predicts only a 1 % error rate in the
double condition. We can then define a capacity measure in
terms of error probabilities that has a baseline value of 0 and is
positive for supercapacity and negative for limited capacity:

Cp = p(miss|single visual) x p(miss|single auditory) —p(miss|double).
(3)

The capacity measure for RT, C(?), is a continuous function
over time. As we indicated before, for statistical inference it is
convenient to use a single-number summary of capacity.
Houpt and Townsend (2012) defined such a summary, the
measurement-error-weighted average of C(f) over each time
point, which we calculated using the sft package for the R
statistical language (Houpt et al., 2014a). We call this measure
Cz, because it has a standard normal distribution if the base-
line model holds. Like Cp, Cz has a baseline value of 0 when
capacity is unlimited, with positive values indicating
supercapacity and negative values indicating limited capacity.
We also calculated a version of Cz in which the baseline value
of 0 equated to fixed capacity [i.e., C(¢) = Y], which we called
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Czf. By using both Cz and Czf, we were able to investigate
individual differences in workload capacity in an absolute
sense. That is, we could ask the question, did any of our
participants display evidence of greater-than-fixed capacity,
or perhaps even supercapacity?

Figure 5 plots the individual workload capacity estimates.
Given that Cz and Czf have standard normal distributions for
each participant, assuming the unlimited-capacity and fixed-
capacity models, respectively, significant deviations from the-
se models at the two-tailed .05 level correspond to values with
an absolute magnitude greater than 1.96 (indicated by the
dotted lines in Fig. 5). Shapiro—Wilk tests could not reject a
normal model for the distribution of Czf over participants for
the 50 % (W =.99, p = .62) and 75 % (W = .997, p = .99)
groups, and for Cz for the 50 % group (W= .98, p = .11), but
they did reject it for the 75 % group (W = .972, p = .007).
However, the latter result was due to a single positive outlier
(see Fig. 5); when it was removed, the normal model was not
rejected (W = .989, p = .35). In contrast, Cp, which is not
predicted to have a normal distribution, was strongly left-

50% Group
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o
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o
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Fig. 5 Scatterplots of workload capacity with a zero baseline for
unlimited capacity (Cz) and fixed capacity (Czf) (left panels), and
accuracy-based capacity with a zero baseline for unlimited capacity
(Cp) against accuracy in dual blocks (right panels). The solid lines
indicate baselines, and the dotted lines are 1.96 standard units on either
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skewed with a large mode just below 0 for both the 50 %
(W= .854, p <.001) and 75 % (W = .77, p < .001) groups,
and this was not changed when the two positive outliers for
the 50 % group were removed (W = .825, p <.001).

Table 4 gives the Spearman—Brown split-half reliability
estimates for the three workload capacity statistics.
Reliability was lower for the accuracy-based estimate, but
was relatively good for the RT-based estimates when they
were based on all of the available data. Given that perceptual
applications of workload capacity have generally been based
on more trials per participant than the present experiment, the
reliabilities for the RT-based measures in Table 4 are quite
encouraging. This performance can be attributed to the rela-
tively high efficiency in the way Houpt and Townsend (2012)
capacity estimates take a weighted combination of data across
time. Given these results, we place more emphasis on the
interpretation of the RT-based workload capacity measures
(Cz and Czf) than on the accuracy-based measure (Cp).

Table 2 shows that Cz and Czf are very highly correlated,
as would be expected, given that they are measured from the
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side of the baselines. The large triangle symbols in the Cz-versus-Czf
plots are the two participants with large Cp values (4.2 and 6,
respectively). The large triangles in the Cp-versus-dual-accuracy plots
are participants with Czf > 1.96, and the large diamond is a participant
with Cz> 1.96
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Table 4  Average Spearman—Brown split-half reliabilities of workload
capacity for a design with 7 trials, based on accuracy with a zero baseline
for unlimited capacity (Cp) and based on RT with a zero baseline for
unlimited capacity (Cz) and fixed capacity (Czf)

50 % 75 %

400 200 100 400 200 100
Cz .86 .76 .67 91 .84 8
Czf .85 75 .66 91 .83 17
Cp 76 .59 49 .84 72 .62

same data, although the correlation is not perfect due to the
ways in which the weighting function across time interacts
with the different Cz and Czf baselines. Figure 5 shows that
they provide highly consistent classifications of the individ-
ual participants. Table 2 also shows that Cp and dual-block
accuracy are highly correlated, with Fig. 5 showing that this
association is limited to lower levels of accuracy, due to the
large mode in the Cp distribution just below zero. For the
RT-based measures, Cz and Czf, the 1.96-standard-unit cut-
offs in Fig. 5 indicate that seven participants in the 50 %
group and four in the 75 % group could be classified as
having significantly greater than fixed capacity, and one in
the latter group significantly greater than unlimited capacity
(i.e., supercapacity). However, a much larger number of
participants in the 50 % and 75 % groups were classified
as having less than unlimited (89 % and 96 %, respectively)
and less than fixed (33 % and 69 %, respectively) capacity.

Consistent with the individual results, we found strong ev-
idence that the population means were less than zero for all
three measures and for both groups (all BFs > 2,000), indicat-
ing severely limited capacity that is less than fixed. There was
also strong evidence for mean estimates being lower in the
75 % group than in the 50 % group for Cz (6.4 vs. —4.1,
BF = 2.6 x 10'%) and Czf (-3.4 vs. 1.0, BF = 5.9 x 10%),
but not for Cp (-8.2 vs. —6.9, BF = 3.61). It seems likely that
the group differences are due to the strong dual-block “target-
present” response bias displayed by the 75 % group.

In summary, the population mean results indicated
less than fixed capacity. The same held for about
50 % of the participants individually. Most of the re-
maining participants had performance that was not ap-
preciably different from fixed capacity, with a small
minority being closer to unlimited capacity (i.e., no
dual-task interference). The only cases that clearly
exceeded unlimited capacity on one type of measure
(i.e., RTs or accuracy) did not do so on the other, sug-
gesting that they did not represent cases of genuine
supercapacity (i.e., facilitation of performance in the
dual-task setting). As is shown in Table 4, the capacity
estimates were fairly reliable given measurement over
the 400 trials used in our experiment.

General discussion

The gatekeeper task is a version of a dual n-back task with n
fixed at two and using minimal sets of three auditory and three
visuospatial stimuli, developed by Heathcote et al. (2014).
Binary speeded responses, which are required on every trial,
indicate whether one or both of the stimuli are targets (i.e.,
match the stimulus from two trials back). The small stimulus
sets and the constant remapping of the associations to target
and nontarget responses promotes proactive interference and
requires constant updating of the bindings between represen-
tations, making gatekeeper trials much more attention-
demanding than the majority of trials in traditional n-back or
dual n-back tasks (Gray et al., 2003). Gatekeeper also mini-
mizes the effects of memory capacity limitations that affect
complex-span tasks, and so more directly measures individual
differences in interference control in working memory.

In the following sections, we discuss the main results that
we obtained from our analysis of performance in the gatekeep-
er task. We first address the role of dual-task demands and the
way in which we quantified them, by applying the capacity
measure developed by Townsend and Nozawa (1995). We
then discuss the relationship between gatekeeper performance
and the widely used operation span measure of working mem-
ory capacity (Unsworth et al., 2005). We then discuss further
potential applications and extensions of the gatekeeper task.

Dual-task demands

Two sources of evidence suggested the presence of strong
dual-task demands on the capacity available for information
processing in the gatekeeper task. First, we compared single-
target trials in single- and dual-task blocks, which enabled us
to measure dual-task interference with the numbers of both
targets and responses controlled. Average performance in
terms of both accuracy and speed was clearly better in the
single- than in the dual-block setting, supporting the presence
of dual-task interference.

The second type of evidence came from our novel applica-
tion to memory processes of the systems factorial technology
workload capacity measure (Houpt & Townsend, 2012;
Townsend & Nozawa, 1995). The gatekeeper task is a version
of a redundant-target design widely used to investigate per-
ceptual workload capacity, except that the definition of a target
changes on every trial. Workload capacity is measured by
comparing the performance for double targets in the dual-
task blocks to the performance for single targets in the
single-task blocks. Our results indicated severe dual-task in-
terference, with performance averaged over participants being
clearly less than fixed capacity. That is, the interference was
more than would be expected from sharing a fixed amount of
capacity between visual and auditory processes, or if visual
and auditory processes were carried out sequentially.
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Houpt and Townsend’s (2012) measure also allowed us to
look at performance at the individual-participant level. About
half of the participants displayed dual-block performance that
was degraded below that of a fixed-capacity system. The re-
maining participants displayed performance consistent with
fixed capacity, with very few approaching the level of perfor-
mance associated with an unlimited-capacity system (i.e., hav-
ing no dual-task disadvantage). The latter participants might
perhaps correspond to Watson and Strayer’s (2010)
supertaskers—individuals with extraordinary multitasking
ability (see also Medeiros-Ward, Watson, & Strayer,
2014)—in which case Houpt and Townsend’s analysis of
gatekeeper performance might provide an efficient method
of screening for such individuals. However, some caution is
warranted, given that we found some inconsistencies between
the accuracy- and RT-based performance measures.

Future research might seek to resolve inconsistencies be-
tween accuracy- and RT-based measures using evidence accu-
mulation modeling (e.g., Brown & Heathcote, 2008; Ratcliff
& Smith, 2004). Such models account for the speed—accuracy
trade-offs observed in choice tasks in terms of the latent var-
iables quantifying the rate of evidence accumulation and the
amount of accumulated evidence required to trigger a deci-
sion. Such trade-offs are ubiquitous and potentially confound
inferences about psychological processes based on RTs while
ignoring accuracy, or vise versa. Eidels, Donkin, Brown, and
Heathcote (2010a) extended Brown and Heathcote’s linear
ballistic accumulator (LBA) model to account for choices re-
lying on the logical OR and AND contingencies among mul-
tiple stimuli, and successfully applied the model to data from a
perceptual redundant-target paradigm. Hence, the same exten-
sion would be appropriate for the gatekeeper task, and would
represent a potentially informative new cognitive-process-
model variation on the latent variable modeling commonly
used in working memory research.

Gatekeeper and operation span

We also explored the relationship between the OSPAN
complex-span measure and performance in the gatekeeper
task, and observed a surprisingly high correlation for gate-
keeper accuracy in the 50 %-target conditions: .43 in dual
blocks and .3 in single blocks. In contrast, most correlations
between n-back sensitivity and complex-span measures have
been in the range between .1 and .24. Jaeggi et al. (2010a)
noted that some exceptions—with magnitudes similar to our
dual-block finding—might be attributable to improved reli-
ability, obtained by combining either zero- to three-back
scores (Shelton, Elliott, Hill, Calamia, & Gouvier, 2009) or
several complex-span measures (Shamosh, De Young, Green,
Reis, Johnson, Conway, ... & Gray, 2008). Given the high
reliability of our gatekeeper accuracy scores, a similar factor
might be in play here. The stronger result for dual blocks
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suggests that another important component of the high corre-
lation with OSPAN recall is dual-task load, consistent with
OSPAN also using two tasks, although the stimuli for the
two tasks occur sequentially rather than simultaneously, as
in gatekeeper task.

However, the specificity of the high correlations to the
50 % condition—in the 75 % condition, correlations were at
best .21—suggests that other factors are also important. One
aspect that differentiates dual-block responding in the 50 %
group from that in the 75 % group is that it was unbiased.
Adopting target-biased responding likely requires participants
to notice and act upon the predominance of targets in the 75 %
group, which may inflate individual differences (i.e., some
participants may be quick to learn the built-in contingencies,
whereas others take longer), and so deflate correlations.
Consistent with this possibility, the standard deviations
of bias estimates were substantially greater in the
75 % group than in the 50 % group for both dual
(.46 vs. .32) and single (.39 vs. .23) blocks.

Given the surprising nature of the correlation with OSPAN,
and its basis in a relatively small sample (100 participants),
more research will be needed. A structural equation modeling
approach would likely be advantageous, in order to identify
the latent factors that underpin any shared variance. For ex-
ample, one potential avenue would be to explore whether the
gatekeeper 50 %-target dual-task accuracy and complex span
explain different components of variance in fluid intelligence,
as has been found to be the case for n-back performance
(Jaeggi et al., 2010b).

Future directions

Such future research and wider uses of the gatekeeper task are
encouraged by the excellent reliability displayed by both the
accuracy and mean-RT measures. It is likely that reliability
was good because the small stimulus sets in the gatekeeper
task—hence, lures with a homogeneous level of proactive
interference—promote a constant level of difficulty for all
trials, whereas in traditional n-back tasks with larger stimulus
sets, in contrast, proactive interference—and hence difficul-
ty—can fluctuate more widely. Schmiedek et al. (2009b) not-
ed “the importance of carefully controlling the occurrence of
lures in applications of n-back tasks . . . [and that] such control
is possible to a considerable but not unlimited degree, due to
combinatorial constraints” (p. 207). Our use of small stimulus
sets avoided these combinatorial constraints.

A further reason for our higher reliability is that responses
are collected on all trials in the gatekeeper task, whereas in
some other versions of n-back tasks responses are required on
only a subset of trials. Requiring responses on all trials en-
abled the collection of what proved to be the two most reliable
gatekeeper measures, overall accuracy and mean RT (i.e., ac-
curacy and mean RT, averaged over both target and nontarget
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trials). If a choice is required between these measures, accu-
racy would likely be preferable, even though it was slightly
less reliable, since it showed greater sensitivity to individual
differences than did mean RT. Our results examining reliabil-
ity as a function of numbers of trials suggest that the gatekeep-
er accuracy and mean-RT measures could be deployed with as
few as 50-100 trials in applied settings in which the larger
number used in the present experiment would be impractical.
However, we caution that a reasonable number of practice
trials should always be given, in order to make sure that par-
ticipants understand the demands of the task.

Future applications of the gatekeeper task could use dual
blocks with either 75 % or 50 % targets. In the 75 % version,
we found fast target-biased responses and greater inconsisten-
cy in individual bias settings than in the 50 % version. These
results suggest that the 50 % version of gatekeeper is prefer-
able. However, the 50 % version does introduce some predict-
ability about the nature of the upcoming stimulus within each
modality, because stimuli that occurred three trials back must
be selected with greater probability than those that occurred
two trials back.

Another way of achieving a 50 % target probability, but
without introducing predictability, would be to use an
exclusive-or (“XOR”) response rule. That is, access to the
club in the gatekeeper task would be blocked only if the stim-
ulus in one modality occurred two back and the other did not.
In this way, the XOR rule might be ideal, because it would
make equally probable the two possible stimuli that could
occur in each modality and the two possible responses re-
quired by the combined stimuli.

A further potential advantage of an XOR version of gate-
keeper would be that it would increase dual-task interference
and make it more homogeneous over trials. In the original
gatekeeper task, due to the nature of redundant-target tasks,
participants need only fully process one modality in order to
make an accurate “block” response. That is, they need only
detect that a stimulus in one or the other modality occurred
two back, and so could stop processing both modalities as
soon as detection had occurred in one or the other. In contrast,
in the XOR version they must fully process both modalities to
make an accurate “allow” response, so the potential levels of
dual-task interference would differ between these two trial
types. The XOR version always requires both modalities to
be fully processed, because the correct response is defined by
the relationship between the stimuli in the two modalities.

High and consistent levels of dual-task interference in the
XOR version of gatekeeper, combined with the high and con-
sistent levels of proactive interference attending the use of
small stimulus sets, have the potential to create an even more
challenging and reliable task. We are presently replicating the
experiment reported here using the XOR gatekeeper in order
to explore this potential. If it fulfills its promise, we then plan
to attempt to develop a unified account of both speed and

accuracy in the XOR gatekeeper task by extending the
LBA-based methods developed in Eidels et al. (2010a) to
model an XOR logical contingency.

Conclusions

The number of successfully retrieved items often defines
working memory capacity. In perceptual tasks another type
of capacity has been discussed, workload capacity.
Workload capacity underpins the ability to process informa-
tion as processing load increases through an increase in the
number of signals to be processed. We developed a novel task
and analyses that allowed an assessment of workload capacity
in working memory. The task, gatekeeper, requires mainte-
nance of information in working memory about either one or
two types of attributes for the last two items studied. By
allowing comparisons of performance in single- and dual-
attribute versions, gatekeeper provides reliable measures of
working memory’s workload capacity. These measures, in
turn, enable the understanding of individual differences, indi-
cating where dual-task performance is characterized better by
unlimited capacity and where it is characterized better by fixed
or limited capacity. We found limited capacity to be the pre-
dominant case here when processing both visual and auditory
attributes. Taken together, the new task and measurement ap-
proach help to sharpen our theoretical understanding of work-
ing memory capacity and multitasking ability.

Author note  We acknowledge support from ARC Professorial Fellow-
ship DP110100234 to A.H. and an ARC Discovery Project
DP120102907 to A.E. and A.H.

References

Altieri, N., & Townsend, J. T. (2011). An assessment of behavioral dy-
namic information processing measures in audiovisual speech per-
ception. Frontiers in Psychology, 2(238), 1-15. doi:10.3389/fpsyg.
2011.00238

Baguley, T. (2011). Calculating and graphing within-subject confidence
intervals for ANOVA. Behavior Research Methods, 44, 158—-175.
doi:10.3758/s13428-011-0123-7

Brown, S. D., & Heathcote, A. (2008). The simplest complete model of
choice response time: Linear ballistic accumulation. Cognitive
Psychology, 57, 153-178. doi:10.1016/j.cogpsych.2007.12.002

Burgess, G. C., Gray, J. R., Conway, A. R. A., & Braver, T. S. (2011).
Neural mechanisms of interference control underlie the relationship
between fluid intelligence and memory span. Journal of
Experimental Psychology: General, 140, 674—692.

Burns, D. M., Houpt, J. W., Townsend, J. T., & Endres, M. J. (2013).
Functional principal components analysis of workload capacity
functions. Behavior Research Methods, 45, 1048—1057. doi:10.
3758/s13428-013-0333-2

Conrad, R. (1964). Acoustic confusions in immediate memory. British
Journal of Psychology, 55, 75-84.

Cowan, N. (2001). The magical number 4 in short-term memory: a re-
consideration of mental storage capacity. Behavioral and Brain

@ Springer


http://dx.doi.org/10.3389/fpsyg.2011.00238
http://dx.doi.org/10.3389/fpsyg.2011.00238
http://dx.doi.org/10.3758/s13428-011-0123-7
http://dx.doi.org/10.1016/j.cogpsych.2007.12.002
http://dx.doi.org/10.3758/s13428-013-0333-2
http://dx.doi.org/10.3758/s13428-013-0333-2

988

Mem Cogn (2015) 43:973-989

Sciences, 24, 87114, disc. 114-185. doi:10.1017/
S0140525X01003922

Donkin, C., Little, D. R., & Houpt, J. W. (2014). Assessing the speed—
accuracy trade-off effect on the capacity of information processing.
Journal of Experimental Psychology: Human Perception and
Performance, 40, 1183—-1202. doi:10.1037/a0035947

Donnelly, N., Comes, K., & Menneer, T. (2012). An examination of the
processing capacity of features in the Thatcher illusion. Attention,
Perception, & Psychophysics, 74, 1475-1487. doi:10.3758/s13414-
012-0330-z

Eidels, A., Townsend, J. T., & Pomerantz, J. R. (2008). Where similarity
beats redundancy: The importance of context, higher order similar-
ity, and response assignment. Journal of Experimental Psychology:
Human Perception and Performance, 34, 1441-1463.

Eidels, A., Donkin, C., Brown, S. D., & Heathcote, A. (2010a).
Converging measures of workload capacity. Psychonomic Bulletin
& Review, 17, 763-771. doi:10.3758/PBR.17.6.763

Eidels, A., Townsend, J. T., & Algom, D. (2010b). Comparing perception
of Stroop stimuli in focused versus divided attention paradigms:
Evidence for dramatic processing differences. Cognition, 114,
129-150.

Eidels, A., Townsend, J. T., Hughes, H. C., & Perry, L. A. (2015).
Evaluating perceptual integration: Uniting response-time- and
accuracy-based methodologies. Attention, Perception, &
Psychophysics, 77, 659-680. doi:10.3758/s13414-014-0788-y

Engle, R. W. (2002). Working memory capacity as executive attention.
Current Directions in Psychological Science, 11, 19-23. doi:10.
1111/1467-8721.00160

Fitousi, D., & Wenger, M. J. (2011). Processing capacity under perceptual
and cognitive load: A closer look at load theory. Journal of
Experimental Psychology: Human Perception and Performance,
37, 781-798.

Garner, W. R. (1974). The processing of information and structure.
Potomac: Erlbaum.

Gray, J. R., Chabris, C. F., & Braver, T. S. (2003). Neural mechanisms of
general fluid intelligence. Nature Neuroscience, 6, 316-322.

Heathcote, A., Eidels, A., Houpt, J., Colman, J., Watson, J., & Strayer, D.
(2014). Multi-tasking in working memory. In B. H. Ross (Ed.),
Proceedings of the 32nd annual conference of the cognitive science
society (pp. 601-606). Austin: Cognitive Science Society.

Houpt, J. W., & Townsend, J. T. (2012). Statistical measures for workload
capacity analysis. Journal of Mathematical Psychology, 56, 341—
355. doi:10.1016/j.jmp.2012.05.004

Houpt, J. W., Blaha, L. M., McIntire, J. P., Havig, P. R., & Townsend, J. T.
(2014a). Systems factorial technology with R. Behavior Research
Methods, 46, 307-330. doi:10.3758/s13428-013-0377-3

Houpt, J. W., Townsend, J. T., & Donkin, C. (2014b). A new perspective
on visual word processing efficiency. Acta Psychologica, 145, 118—
127.

Ingvalson, E. M., & Wenger, M. J. (2005). A strong test of the dual-mode
hypothesis. Perception & Psychophysics, 67, 14-35.

Jaeggi, S. M., Seewer, R., Nirkko, A. C., Eckstein, D., Schroth, G.,
Groner, R., & Gutbrod, K. (2003). Does excessive memory load
attenuate activation in the prefrontal cortex? Load-dependent pro-
cessing in single and dual tasks: Functional magnetic resonance
imaging study. Neurolmage, 19, 210-225.

Jaeggi, S. M., Buschkuehl, M., Etienne, A., Ozdoba, C., Perrig, W. J., &
Nirkko, A. C. (2007). On how high performers keep cool brains in
situations of cognitive overload. Cognitive, Affective, & Behavioral
Neuroscience, 7, 75-89. doi:10.3758/ CABN.7.2.75

Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008).
Improving fluid intelligence with training on working memory.
Proceedings of the National Academy of Sciences, 105, 6829—
6833. doi:10.1073/pnas.0801268105

@ Springer

Jaeggi, S. M., Buschkuehl, M., Perrig, W. J., & Meier, B. (2010a). The
concurrent validity of the n-back task as a working memory mea-
sure. Memory, 18, 394-412.

Jaeggi, S. M., Studer-Luethi, B., Buschkuehl, M., Su, Y.-F., Jonides, J., &
Perrig, W. J. (2010b). The relationship between n-back performance
and matrix reasoning—Implications for training and transfer.
Intelligence, 38, 625-635.

Jeffreys, H. (1961). The theory of probability (3rd ed.). Oxford: Oxford
University Press.

Johnson, S. A., Blaha, L. M., Houpt, J. W., & Townsend, J. T. (2010).
Systems Factorial Technology provides new insights on global-lo-
cal information processing in autism spectrum disorders. Journal of’
Mathematical Psychology, 54, 53-72. doi:10.1016/j.jmp.2009.06.
006

Kahneman, D. (1973). Attention and effort. New York: Prentice Hall.

Kane, M. J., Conway, A. R. A., Miura, T. K., & Colflesh, G. J. H. (2007).
Working memory, attention control, and the n-back task: A question
of construct validity. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 33, 615-622. doi:10.1037/
0278-7393.33.3.615

Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the
American Statistical Association, 90, 773—-795. doi:10.1080/
01621459.1995.10476572

Keppel, G., & Underwood, B. J. (1962). Proactive inhibition in short-
term retention of single items. Journal of Verbal Learning and
Verbal Behavior, 1, 153—161.

McElree, B. (2001). Working memory and focal attention. Journal of
Experimental Psychology: Learning, Memory, and Cognition, 27,
817-835. doi:10.1037/0278-7393.27.3.817

Medeiros-Ward, N., Watson, J. M., & Strayer, D. L. (2014). On
supertaskers and the neural basis of efficient multitasking.
Psychonomic Bulletin & Review. doi:10.3758/s13423-014-0713-3

Morey, R. D. (2008). Confidence intervals from normalized data: A cor-
rection to Cousineau (2005). Tutorial in Quantitative Methods for
Psychology, 4, 61-64.

Morey, C. C., & Cowan, N. (2004). When visual and verbal memories
compete: Evidence of cross-domain limits in working memory.
Psychonomic Bulletin & Review, 11, 296-301. doi:10.3758/
BF03196573

Morey, R. D., & Rouder, J. N. (2011). Bayes factor approaches for testing
interval null hypotheses. Psychological Methods, 16, 406-419. doi:
10.1037/a0024377

Morey, R. D., & Rounder, J. (2012). Bayes Factor: An R package for
computing Bayes factors in common research designs. Retrieved
from http://bayesfactorpcl.r-forge.r-project.org/

Neufeld, R. W. J., Townsend, J. T., & Jetté, J. (2007). Quantitative re-
sponse time technology for measuring cognitive-processing capaci-
ty in clinical studies. In R. W. J. Neufeld (Ed.), Advances in clinical
cognitive science: Formal modeling and assessment of processes
and symptoms (pp. 207-238). Washington, DC: American
Psychological Association.

Oberauer, K. (2002). Access to information in working memory:
Exploring the focus of attention. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 28, 411-421. doi:
10.1037/0278-7393.28.3.411

Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N-
back working memory paradigm: A meta-analysis of normative
functional neuroimaging studies. Human Brain Mapping, 25, 46—
59. doi:10.1002/hbm.20131

Raftery, A. E. (1995). Bayesian model selection in social research. In P. V.
Marsden (Ed.), Sociological methodology 1995 (pp. 111-164).
Cambridge: Blackwell.

Ratcliff, R., & Smith, P. L. (2004). A comparison of sequential sampling
models for two-choice reaction time. Psychological Review, 111,
333-367. doi:10.1037/0033-295X.111.2.333


http://dx.doi.org/10.1017/S0140525X01003922
http://dx.doi.org/10.1017/S0140525X01003922
http://dx.doi.org/10.1037/a0035947
http://dx.doi.org/10.3758/s13414-012-0330-z
http://dx.doi.org/10.3758/s13414-012-0330-z
http://dx.doi.org/10.3758/PBR.17.6.763
http://dx.doi.org/10.3758/s13414-014-0788-y
http://dx.doi.org/10.1111/1467-8721.00160
http://dx.doi.org/10.1111/1467-8721.00160
http://dx.doi.org/10.1016/j.jmp.2012.05.004
http://dx.doi.org/10.3758/s13428-013-0377-3
http://dx.doi.org/10.3758/CABN.7.2.75
http://dx.doi.org/10.1073/pnas.0801268105
http://dx.doi.org/10.1016/j.jmp.2009.06.006
http://dx.doi.org/10.1016/j.jmp.2009.06.006
http://dx.doi.org/10.1037/0278-7393.33.3.615
http://dx.doi.org/10.1037/0278-7393.33.3.615
http://dx.doi.org/10.1080/01621459.1995.10476572
http://dx.doi.org/10.1080/01621459.1995.10476572
http://dx.doi.org/10.1037/0278-7393.27.3.817
http://dx.doi.org/10.3758/s13423-014-0713-3
http://dx.doi.org/10.3758/BF03196573
http://dx.doi.org/10.3758/BF03196573
http://dx.doi.org/10.1037/a0024377
http://bayesfactorpcl.r-forge.r-project.org/
http://dx.doi.org/10.1037/0278-7393.28.3.411
http://dx.doi.org/10.1002/hbm.20131
http://dx.doi.org/10.1037/0033-295X.111.2.333

Mem Cogn (2015) 43:973-989

989

Rouder, J. N., Morey, R. D., Speckman, P. L., & Province, J. M. (2012).
Default Bayes factors for ANOVA designs. Journal of Mathematical
Psychology, 56, 356-374. doi:10.1016/j.jmp.2012.08.001

Schmiedek, F., Hildebrandt, A., Lovdén, M., Wilhelm, O., &
Lindenberger, U. (2009a). Complex span versus updating tasks of
working memory: The gap is not that deep. Journal of Experimental
Psychology. Learning, Memory, and Cognition, 35, 1089—-1096. doi:
10.1037/a0015730

Schmiedek, F., Li, S.-C., & Lindenberger, U. (2009b). Interference and
facilitation in spatial working memory: Age-associated differences
in lure effects in the n-back paradigm. Psychology and Aging, 24,
203-210.

Schneider, W., & Shiffrin, R. M. (1977). Controlled and automatic human
information processing: 1. Detection, search, and attention.
Psychological Review, 84, 1-66. doi:10.1037/0033-295X.84.1.1

Shamosh, N. A., DeYoung, C. G., Green, A. E., Reis, D. L., Johnson, M.
R., Conway, A. R. A., ... Gray, J. R. (2008). Individual differences
in delay discounting: Relation to intelligence, working memory, and
anterior prefrontal cortex. Psychological Science, 19, 904-911.

Shelton, J. T., Elliott, E. M., Hill, B. D., Calamia, M. R., & Gouvier, W. D.
(2009). A comparison of laboratory and clinical working memory tests
and their prediction of fluid intelligence. Intelligence, 37, 283-293.

Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human
information processing: II. Perceptual learning, automatic attending
and a general theory. Psychological Review, 84, 127-190. doi:10.
1037/0033-295X.84.2.127

Stanislaw, H., & Todorov, N. (1999). Calculation of signal detection
theory measures. Behavior Research Methods, Instruments, &
Computers, 31, 137-149. doi:10.3758/BF03207704

Townsend, J. T., & Altieri, N. (2012). An accuracy—response time capac-
ity assessment function that measures performance against standard
parallel predictions. Psychological Review, 119, 500-516.

Townsend, J. T., & Eidels, A. (2011). Workload capacity spaces: A uni-
fied methodology for response time measures of efficiency as work-
load is varied. Psychonomic Bulletin & Review, 18, 659—681.

Townsend, J. T., & Honey, C. J. (2007). Consequences of base time for
redundant signals experiments. Journal of Mathematical
Psychology, 51, 242-265.

Townsend, J. T., & Nozawa, G. (1995). Spatio-temporal properties of
elementary perception: An investigation of parallel, serial, and

coactive theories. Journal of Mathematical Psychology, 39, 321—
359. doi:10.1006/jmps.1995.1033

Townsend, J. T., & Wenger, M. J. (2004). A theory of interactive parallel
processing: New capacity measures and predictions for a response
time inequality series. Psychological Review, 111, 1003—1035. doi:
10.1037/0033-295X.111.4.1003

Turner, M. L., & Engle, R. W. (1989). Is working memory capacity task
dependent? Journal of Memory and Language, 28, 127-154. doi:10.
1016/0749-596X(89)90040-

Unsworth, N., Heitz, R. P., Schrock, J. C., & Engle, R. W. (2005). An
automated version of the operation span task. Behavior Research
Methods, 37, 498-505. doi:10.3758/BF03192720

Von Der Heide, R. J., Wenger, M. J., Gilmore, R. O., & Elbich, D. B.
(2011). Developmental changes in encoding and the capacity to
process face information. Journal of Vision, 11(11), 450. doi:10.
1167/11.11.450

Wagenmakers, E.-J. (2007). A practical solution to the pervasive prob-
lems of p values. Psychonomic Bulletin & Review, 14, 779-804. doi:
10.3758/BF03194105

Watson, J. M., & Strayer, D. L. (2010). Supertaskers: Profiles in extraor-
dinary multitasking ability. Psychonomic Bulletin & Review, 17,
479-485. doi:10.3758/PBR.17.4.479

Wenger, M. J., & Gibson, B. S. (2004). Using hazard functions to assess
changes in processing capacity in an attentional cuing paradigm.
Journal of Experimental Psychology: Human Perception and
Performance, 30, 708-719. doi:10.1037/0096-1523.30.4.708

Wenger, M. J., & Townsend, J. T. (2006). On the costs and benefits of faces
and words: Process characteristics of feature search in highly mean-
ingful stimuli. Journal of Experimental Psychology: Human
Perception and Performance, 32, 755-779. doi:10.1037/0096-1523.
32.3.755

Wickens, C. D. (1980). The structure of attentional resources. In R. S.
Nickerson (Ed.), Attention and performance VIII (pp. 239-257).
Hillsdale: Erlbaum.

Zehetleitner, M., Krummenacher, J., & Miiller, H. J. (2009). The detec-
tion of feature singletons defined in two dimensions is based on
salience summation, rather than on serial exhaustive or interactive
race architectures. Attention, Perception, & Psychophysics, 71,
1739-1759. doi:10.3758/APP.71.8.1739

@ Springer


http://dx.doi.org/10.1016/j.jmp.2012.08.001
http://dx.doi.org/10.1037/a0015730
http://dx.doi.org/10.1037/0033-295X.84.1.1
http://dx.doi.org/10.1037/0033-295X.84.2.127
http://dx.doi.org/10.1037/0033-295X.84.2.127
http://dx.doi.org/10.3758/BF03207704
http://dx.doi.org/10.1006/jmps.1995.1033
http://dx.doi.org/10.1037/0033-295X.111.4.1003
http://dx.doi.org/10.1016/0749-596X(89)90040-
http://dx.doi.org/10.1016/0749-596X(89)90040-
http://dx.doi.org/10.3758/BF03192720
http://dx.doi.org/10.1167/11.11.450
http://dx.doi.org/10.1167/11.11.450
http://dx.doi.org/10.3758/BF03194105
http://dx.doi.org/10.3758/PBR.17.4.479
http://dx.doi.org/10.1037/0096-1523.30.4.708
http://dx.doi.org/10.1037/0096-1523.32.3.755
http://dx.doi.org/10.1037/0096-1523.32.3.755
http://dx.doi.org/10.3758/APP.71.8.1739

	Working memory’s workload capacity
	Abstract
	Tasks measuring working memory
	Method
	Participants
	Procedure

	Results
	Overview
	Bayes factor analysis
	Gatekeeper and OSPAN accuracy and exclusion criteria
	Reliability
	OSPAN–Gatekeeper correlations
	Accuracy and RT in single- and dual-task blocks

	Discussion
	Working memory’s workload capacity

	General discussion
	Dual-task demands
	Gatekeeper and operation span
	Future directions
	Conclusions

	References


